题名:
集成学习入门与实战   ji cheng xue xi ru men yu shi zhan / (印度)阿洛克·库马尔(Alok Kumar),马扬克·贾因(Mayank Jain)著 , 吴健鹏译
ISBN:
978-7-122-40167-0 价格: CNY69.80
语种:
chi
载体形态:
122页 图 21cm
出版发行:
出版地: 北京 出版社: 化学工业出版社 出版日期: 2022
内容提要:
《集成学习入门与实战:原理、算法与应用》通过6章内容全面地解读了集成学习的基础知识、集成学习技术、集成学习库和实践应用。其中集成学习技术包括采样、Bagging、投票集成、Boosting、AdaBoost、梯度提升、XGBoost、Stacking、随机森林、决策树等,从混合训练数据到混合模型,再到混合组合,逻辑严谨、逐步讲解;同时也对ML-集成学习、Dask、LightGBM、AdaNet等集成学习库相关技术进行了详细解读;最后通过相关实践对集成学习进行综合性应用。本书配有逻辑框图、关键代码及代码分析,使读者在阅读中能够及时掌握算法含义和对应代码。 
主题词:
机器学习  
中图分类法:
TP181 版次: 5
其它题名:
原理、算法与应用
主要责任者:
库马尔 ku ma er 著
主要责任者:
贾因 jia yin 著
次要责任者:
吴健鹏 wu jian peng 译
责任者附注:
阿洛克·库马尔,是Publicis sapient的一位AI从业者和创新领导者。马扬克·贾因是Publicis sapient kepler创新实验室的技术经理和AI/ML专家。 
索书号:
TP181/glg0072.B